Faculty of Science

Second Semester, 2023–2024 Course Handouts

Table	of	Conte	ent
-------	----	-------	-----

S. No	Course Code	Course Title	Page No
		B.Sc I Year	
1	SC120	Foundation Course (English Language - I)	1-3
2	SC121	Physics - II (Classical & Quantum Mechanics)	4-6
3	SC122	Chemistry - II (Inorganic Chemistry)	7-10
4	SC123	Mathematics - II (Multivariable Calculus)	11-13
5	SC124	Computer Science - II (Programming in C)	14-16
6	SC125	Biology - II (Animal Kingdom)	17-19
		B.Sc II Year20-23	
7	SC220	Foundation Course (Environmental Science)	20-23
8	SC221	Physics - IV (Magnetism and Electromagnetic theory)	24-26
9	SC222	Chemistry - IV (Organic Chemistry)	27-31
10	SC223	Mathematics - IV (Group Theory)	32-34
11	SC224	Computer Science - IV (Operating System)	35-38
12	HSC221	Basic Material Science	93-41
13	HSC223	Partial Differential	42-43
14	HSC225	Bio Chemistry	44-45
		B.Sc III Year	
15	SC320	Soft Skills Elective Foundation Course II	46-48
16	SC321	Physics VI Elective IV	49-51
17	SC322	Chemistry VI Elective V	52-54
18	SC323	Mathematics VI, Advance Abstract algebra	55-57
19	HSC321	Modern Physics	58-60
20	HSC322	Chemistry (D-Block Elements)	61-64
21	HSC323	Maths (Numerical Analysis)	65-67

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC120	English Language-I	3	0	3

Instructor-in-charge: Dr.RITU BENJAMIN

Learning Outcomes:

After successful completion of the course student will be able to

- 1. Use effective English Language
- 2. Write correct English.
- 3. Write effective formal letters
- 4. Understand the different aspects of English Language and to use it in real time verbally and non-verbally.
- 5. Understand and develop a liking for learning English.

Text booksT1	English Language Skills-I by Aruna Koneru
Reference Books R1	Effective Technical Communication by Ashraf Rizvi, Tata McGraw Hill Publication.
Reference Book R2	English Grammar & Composition by Wren and Martin, S Chand Publication
Reference Book R3	Soft Skills- K.Alex

Lecture Nos	Learning Objective	Topics to be covered	Reference
1-3	To learn the sounds of English Language	Phonetics	R1
4-6	To learn about silent letters	Silent letters	R1, R2, R3
7-9	To understand the dictionary and to learn the way to use it	Dictionary- Its use	T1
10-12	To learn the various methods to improve vocabulary	Vocabulary Extension	T1
13-14	To understand prepositional phrase	Prepositional Phrases	R2

Lecture Nos	Learning Objective	Topics to be covered	Reference
15-16	To understand Prepositional Verbs	Phrasal Verbs	R2
17-19	To improve the reading Skills	Reading Skills	R1, R2, R3
20-22	To improve listening Skills	Listening Skills	R1, R2, R3
23-25	To learn correct usage of words	Effective use of words	R1, R2, R3
26-28	To learn to build correct sentences	Effective sentences	R1, R2, R3
29-31	To learn to draft different types of Business Letters	Structure of business letters	R1, R2, R3
32-34	To learn to write business letters in different styles	Effective style of business correspondence	T1
35-37	To understand business communication	Business correspondence	T1
38-40	To improve communication skills	The art of conversation	T1,R2

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	16	12-02-2024	1-9	СВ
Test 2	60 Minutes	17	11-03-2024	10- 22	OB
Test 3	60 Minutes	17	15-04-2024	23-31	СВ
*GD/P/CS	Throughout the Semester	10	**		СВ
Comprehensive Exam	3 Hours	40	16-05-2024	1- 40	СВ

*Group Discussion/ Presentation/ Case Study ** To be announced in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc

Date: 08/01/2024

Dr.RITU BENJAMIN Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC121	Classical and Quantum Mechanics (PhysicsII)	4	2	5

Instructor-in-charge: Dr.ARUN KUMAR SINGH

Learning Outcomes:

- 1. The objective of this course is to make the students understand the basic Classical Mechanics and Quantum Mechanics.
- 2. It also introduces the concepts of Classical & Quantum Mechanics with their applications using mathematical treatment.
- **3.** This course forms the basis for understanding the subsequent courses in science stream.

Text Books T1	Unified physics 3 rd year (1 st paper) by R.P. Goyal, Shivalal Agrawal & Company
T2	Classical Mechanics by J.C. Upadhyay, Himalaya Publishing House, 2014 Edition
Т3	Quantum Mechanics by Satya Prakash, Kedar Nath Ram Nath Publication
Reference Books	Classical Mechanics by J.C. Upadhyay, Himalaya Publishing House,
R1	2014 Edition
Reference Books	Introduction to Quantum Mechanics by David J. Griffiths, Prentice
R2	Hall
Reference Books	Modern Division by Arthur Deison Toto MC Crow Hill Company
R3	Modern Physics by Armur Beiser, Tata MC Graw Hill Company

Lecture No.	Learning Objective	Topics to be covered	Reference
1-5	Understanding Basic coordination system	Basics of Coordinate systems, Cartesian, polar, cylindrical and spherical coordinate system.	Digital Notes will be provided
6-9	Learning Basic aspects of classical mechanics	Generalized co-ordinates and Velocities, Generalized force, constraints, Principle of virtual work, Derivation of Lagrange's equation of motion from Alembert's Principles	R1 (2.1 – 2.8)

Lecture No.	Learning Objective	Topics to be covered	Reference
10-12	Understanding about the Lagrangian mechanics	Lagrangian and its Application to Simple,	R1 2.9
13-14	Continued	Hamilton's Principle, Calculus of Variation and derivation of Euler- Lagrange's equation	R1 2.11
15-18	Learning Lagrange's equation and relating them with Hamiltonian	Lagrange's Equations derived from Hamilton;s Variational principle for Non-conservative systems, Hamiltonian System.	R1 5.6
19-21	Transformation from one to other system	Hamilton's equations of motion, Canonical Transformations,.	R1 6.1
22-24	Application of Lagrangian and Hamiltonian	Poisson's Brackets and its applications	R1 7.2
25-26	Understanding basics of quantum theory	Origin of the quantum theory: failure of classical physics to explain the phenomena such as black-body spectrum, photoelectric effect.	2.1, 2.2, 2.3,
27-29	Learning fundamental of quantum physics and related experiments	Wave-particle duality and uncertainty principle: de Broglie's hypothesis for matter waves: the concept off wave and group velocities, experimental demonstration of mater waves.	3.1,3.2,3.5,3.8
30-33		Schrodinger 's equation, postulatory basis of quantum mechanics, operators, expectation values	4.1,4.12,
34-35	Equations in quantum physics and its	Schrodinger's time dependent and time independent equation	4.1(1), 4.1(2)
36-39	applications	Schrodinger's equation for free particle, potential step	5.1,5.3
40-42		Application to one dimension and three dimension box.	5.4,5.5,5.6

Physic II Lab:

Sr. No	Name of the Experiment
1	To study and determination of Planck's constant.
2	To study the emission spectra of Hydrogen, Neon and mercury vapors.
3	To study and draw the characteristics of a solar cell.
4	To study and plot the characteristics of thermistor and hence find the temperature coefficient of resistance.
5	To study and generate sound waves using SEE lab-3.0.
6	To study digital sound waves using SEE lab-3.0.
7	To study light dependent resistor using SEE lab-3.0.
8	To study frequency response of Piezo sound using SEE lab-3.0.
9	To study velocity of sound using SEE lab-3.0.
10	To study of sound beats using SEE lab-3.0.

Evaluation Scheme:

Student evaluation is based on the series of Tests, Quizzes and Presentation conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	16	12-02-2024	01-10	СВ
Test 2	60 Minutes	17	11-03-2024	11-20	OB
Test 3	60 Minutes	17	15-04-2024	31- 42	СВ
Lab	Throughout the Semester	10	**	**	СВ
Comprehensive Exam	3 Hours	40	18-05-2024	01-42	СВ

** To be announced in the class CB= Closed Book OB= Open Book

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc

Date: 08/01/2024

Dr.ARUN KUMAR SINGH Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC122	Chemistry II	4	2	5

Instructor-in-charge: Dr.PRATIK KUMAR JAGTAP

Learning Outcomes:

- 1. To identify the properties of the noble gases.
- 2. To Explain and predict the chemical behavior and reactivity of organometallic compounds.
- 3. The students will be able to describe the salient features of alkali and alkaline earth metals.
- 4. To understand general trends in the chemistry behind p-block elements.

Text books T1	Concise Inorganic Chemistry, J.D. Lee, OUP, 5th Edition, Black Well Science 2002.
Text Books T2	Advance in Inorganic C hemistry, S.K. Agrawal, KeemtiLal, Pragati Prakashan 2021.
Text Book T3	Organometallic Chemsitry A Unified Approach, R.C. Mehrotra, A. Singh, 2 nd edition, New Age International Publishers 2003.
Text book T4	Chemistry for degree students, R.C. Madan, S chand and company limited 2011.
Reference books R1	Inorganic Chemistry, 4 th Edition, P. Atkins, T. Overton, J. Rouke, M. Weller, F. Armstrong, Oxford University Press 2005.
Reference Books R2	Inorganic Chemistry, Huheey, Keiter & Keiter, Pearson Education 2002.

Lecture No.	Learning Objective	Topics to be covered	Reference
1-4	To identify the properties of the noble gases.	Chemical properties of the noble gasses, chemistry of xenon, structure & bonding in Xenon compounds.	T1 635- 649
5-8	To identify oxidizing/reducing agents in chemical reaction.	Use of redox potential, redox stability in water-frost, Latimer and Pourbaix diagram.	R1 141- 160

Lecture No.	Learning Objective	Topics to be covered	Reference
9-10		Definition, nomenclature and classification of organo metallic compounds	T3 16-21
11-12	To Explain and predict the chemical behavior and	Preparation, properties, bonding and applications of alkyls and aryls of Li, Al, Hg, Sn and Ti.	T3 146- 194
13-14	reactivity of organometallic compounds	A brief account of metal ethylenic complexes and homogenous hydrogenation	R1 684- 685
15-16		mononuclear carbonyls and nature of bonding in metal carbonyls.	T3 331- 346
17-18	To define importance of inorganic elements in vital systems	Essential and trace elements in biological processes	T4 203- 211
19-21	Explain Metal ion binding to	Metalloporphyrins with special reference to haemoglobin and myoglobin	R2 663- 667
22-24	biomolecules and their functions	Biological role of alkali and alkaline earth metals with special reference to Ca ²¹ , nitrogen fixation.	R1 721- 722 R2 691- 692
25-28	The students will be able to describe the salient features of alkali and alkaline earth metals.	s- Block Elements Salient features of hydrides, Salvation and complexation tendencies including their function in Biosystems and Introduction to Alkyl and Aryls.	R1 262,277 R1 253- 267 T1 349- 350 T1 305- 308
29-32	To understand general trends in the chemistry behind p-block elements.	p-Block Elements group 13-17 elements, Compounds like hydrides, Oxides, Oxyacids and Halides of groups 13-16.	R1 287- 417
33-37	The students will be able to know the important compounds and important applications of compounds of	p-Block Elements Hydrides of Boron-diborane and higher boranes, Borazine, Borohydrides.	R1 299- 306
38-40	boron and silicons.	Silicates (Structural principle), Tetra sulfur tetra nitride	R1 13.12
41-42	To study the properties of Inter halogens and their complexes.	Basic properties of halogens, Interhalogens and Polyhalides.	R1 408- 411

Chemistry II -Lab (Including Virtual Lab (VL)

S.No	Name of the Experiment				
1	Determination of acetic acid in commercial vinegar using				
2	Determination of alkali content - antacid tablet using HCl				
3	Estimation of calcium content in chalk as calcium oxalate by permanganometry.				
4	To analyse the given mixture for anions (acid radicals) and cations (basic radicals)				
5	Preparation of pure sample of potash alum (Fitkari) [K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O] (VL)				
6	Preparation of pure sample of the complex potassium trioxalatoferrate (III), $K_3[Fe(C_2O_4)_3]$. $3H_2O$ (VL)				
7	Preparation of Tetraammine copper(I1) Sulphate Monohydrate.				
8	To determine the amount of substance in a solution of unknown concentration using various titrimetric methods. (VL)				
9	To discuss the elements or compounds determined with the help of polarography in different types of samples like food stuff, sea water, fuels, etc. (VL)				
10	To determine the amount of phosphate in soft drinks (VL)				

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	16	13-02-2024	01-10	СВ
Test 2	60 Minutes	17	12-03-2024	11-20	OB
Test 3	60 Minutes	17	16-04-2024	31- 42	СВ
Lab	Throughout the Semester	10	**	**	СВ
Comprehensive Exam	3 Hours	40	20-05-2024	01-42	СВ

****** To be announced in the class

Make-up-policy: Make-up will be given only under genuine circumstance for Tests only. Howerver prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 08/01/2024

Dr.PRATIK KUMAR JAGTAP Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
SC123	Multivariable Calculus Mathematics II	4	0	4

Instructor-in-charge: Dr.SHANTI SWARUP DUBEY

Learning Outcomes:

After successful completion of the course student will be able to

- 1. Find Partial Derivatives
- 2. Total differential and differentiability, Jacobians, Change of variables, Euler's theorem for homogeneous functions.
- 3. Double and Triple Integrals Double integration over rectangular and nonrectangular regions
- 4. Green's, Stokes' and Gauss Divergence Theorem Line integrals

Taxt Book D1	A Course in Multivariable Calculus and Analysis by Sudhir R					
ICAT DOOK KI	Ghorpade					
Text Book R2	Multivariable Calculus (Seventh Edition) by James stewart					

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
1-2	Partial Differentiation Functions of several variables	Definition of Partial Differentiation Functions of several variables	R1 Ch-3 pp-84
3-4	Chain rule	Definition of Chain rule and their problems	R1 Ch-3 pp-116-120
5-6	Euler's theorem	Euler's theorem for homogeneous functions	R2 Ch pp-901-991

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
7-9	Taylor's theorem	Taylor's theorem for functions of two variables and more variables.	R2 Ch 14 pp-901-991
10-13	Minima and Maxima of a function	Minima and Maxima of a function and problems	R2 Ch-14 pp-970-981
14-19	Minima and Maxima of functions of two and more variables.	Definition of Minima and Maxima of functions of two variables and its properties	R1 Ch-4 pp-157-167
20-24	Method of Lagrange multipliers	Method of Lagrange multipliers for finding minima and maxima.	R1 Ch-4 pp-157-167
25-27	Double and Triple Integrals	Definition of Double and Triple Integrals and its problem.	R2 Ch-15 pp-997-1064
28-32	Double integration over rectangular and non rectangular regions.	Double integration over rectangular and nonrectangular regions, Double integrals in polar coordinates	R2 Ch-15 pp-997-1064
33-34	Change of variables in double and triple integrals	Change of variables in double and triple integrals and its examples	R2 Ch-15 pp-997-1064
35-37	Line integrals	Line integrals, Line Integrals in Space, Line Integrals of Vector Fields	R 2 Ch-16 1087-1097
38-40	Applications of line integrals	Applications of line integrals and problems	R 2 Ch-16.2 pp-1087-1097
41-45	Green's, Stokes' and Gauss Divergence Theorem	Examples on Green's, Stokes' and Gauss Divergence Theorem	R 2 Ch-16 pp-1087-1097

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	17	13-02-2024	1-12	СВ
Test 2	60 Minutes	17	12-03-2024	13-28	OB
Test 3	60 Minutes	16	16-04-2024	29- 42	СВ
Quizzes (2)	20 Minutes each	10	**		СВ
Comprehensive Exam	3 Hours	40	22-05-2024	1- 42	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc

Date: 10/01/2024

Dr.SHANTI SWARUP DUBEY Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC124	Computers Science II	4	2	5

Instructor-in-charge: Dr.BHARATI PATEL

Scope and Objective of the course:

This course is offered as a technical art subject to engineering students. It focuses on training the students rigorously in the skills of a structured programming language, particularly in C and application of such language in problem solving.

Text Book(s) T1	"Programming with ANSI C", E. Balaguruswamy, TMH 4th edition, 2004.
Reference Book R1	"Programming with C", Gottfried, Schaum -TMH, 2nd Edition, 2002.
Reference Book R2	"A Book on C", Al Kelly & Ira Pohl, Pearsons, 4th Edition, 2001.
Reference Book R3	"The C Programming Language", Kernighan & Ritchie, 2nd Edition PHI, 2002.

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1	Overview of C	History, Sample program, basic structure of C, executing a C program	T1 Ch.1
2-3	Constants, Variables and Data types	Constants, variables, data types, storage classes, declarations, assigning values, etc	T1 Ch.2
4-5	Operators and Expressions	Arithmetic, relational, logical, assignment, increment and decrement bitwise, conditional operators, expressions, operator precedence, type conversions, etc.	T1 Ch.3
6	Input, output operations	Reading, writing characters, formatted i/o, etc	T1. Ch.4

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
7	Decision making & branching	If statement, if - else, nested if, switch statement, etc	T1 Ch.5
8	Decision making & looping	While loop, do loop, for loop etc	T1 Ch.6
9-10	Arrays	One-dimensional, two- dimensional, multi- dimensional arrays, initialization, etc	T1 Ch.7
11-12	Character arrays & strings	Declaring, initializing, reading, writing strings. Arithmetic operations on characters and string operations, etc	T1 Ch.8
13-15	Low level Programming	Bitwise Operations, Bit fields	R1 Ch.13
16-17	Understanding Functions	Definition of function, function calls, return values	T1 Ch.9
18-20	User Defined Functions	Types of functions, passing arguments, nesting, recursion, passing arrays	T1 Ch.9
21-23	Understanding Structures	Defining structure, accessing structure members, structure initialization, operations on individual members, arrays of structures	T1 Ch.10
24	Structures & Unions	Unions, Structures Vs Unions	T1 Ch.10
25	Dynamic Memory Allocation	Introduction, Dynamic Memory Allocation, Malloc, Calloc, Realloc	T1. Ch.13 (13.1-13.6)
26-27	Understanding Pointers	Introduction, accessing address of a variable, declaring pointers, initialization	T1. Ch.11 (11.1-11.5)
28-29	Programming with Pointers	Accessing a variable through pointer, pointer expressions, pointer increments and scale factor	T1. Ch.11 (11.6-11.9)
30-31	Pointers & Arrays	Pointers & Arrays, Pointers & Strings, Array of Pointers	T1. Ch.11 (11.10-11.12)

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
32-33	Pointers & Functions	Pointers as function arguments, functions returning pointers, pointers & structures	T1. Ch.11 (11.13-11.16)
34-36	File Management	Opening a files, closing a file, I/O operations, Random Access to File, Command line arguments	T1. Ch.12
37-42	Data Structures using C	Implementation of linear linked lists, stacks, queues and binary trees	R2 Ch.10 T1. Ch.13

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remark s
Test 1	60 Minutes	16	13-02-2024	1-10	CB
Test 2	60 Minutes	17	12-03-2024	11- 24	OB
Test 3	60 Minutes	17	16-04-2024	25-42	СВ
Lab	Continuous	10	**	**	**
Comprehensive Exam	3 Hours	40	20-05-2024	1- 42	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.BHARATI PATEL Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC125	Biology II	4	2	5

Instructor-in-charge: Dr.AMENA BANO KHANANI

Learning Outcomes:

This course is offered in the first semester for the second year students of bachelor of sciences.

- 1. Explain what classifies an organism as an animal.
- 2. Identify members of the Animal Kingdom.

Textbook (s) T1	R.L. KOTPAL Modern Textbook of Zoology
Textbook T2	Unified Zoology by DR. H.N. Baijal
Reference Book (s) R1	Biological Science: Taylor, Green & Stout
Reference Book R2	Concepts in Biology; Enger & Ross.

Lecture Nos.	Learning objectives	Topics to be covered	Reference
1-2	Introduction to Animal kingdome, Major and	General Characters, type study: Plasmodium, protozoa, and diseases.	T1 100
3-7	Minor phyla, Protozoa, Porifera	Sycon- Morphology, different types of cells in Sycon, canal system in Porifera.	158T1- 225-247
8-12	General Characteristics of Coelentrate	General Characters, type study: Obelia- Morphollogy of Obelia colony, life history.	T1-295- 335
13-15	Helminthes	Type, study: liver fluke- structure, life cycle.	T1-379

Lecture Nos.	Learning objectives	Topics to be covered	Reference
16-23	Annelida	General characters, type study: Nereis- Morphology; Digestive, Excretory and Reproductive systems.	T1-484- 558
24-25	Arthropoda	General Characters, type study: Cockroach- Morphology, Digestive, Respiratory and Reproductive systems. Economic importance of insects.	T1-645- 769
26.21	Mellusee	General Characters, type study: Pila- Morphology; Respiratory system.	T1-809- 872
20-31	Monusca	Echinodermata General Character, type study: starfish- Morphology; Respiratory and Canal system	T1-907- 927
32-38	Chordata (Fishes,Amphibia)	General Character Screen Migration, parental care, Neoteny	T2- 476505
39-40	Reptiles Bird	General Character Screen Migration, parental care, Neoteny (Neoteny, poisonous and non poisonous snakes: poison apparatus and snake venom), (flight adaptation), (protheria and affinities)	T2-509- 616

Student Evaluation is based on the series of Tests and Quzzies Conducted during the course of semester followed by a comprehensive examination

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test-1	60 Minutes	8	13-02-2024	1-15	СВ
Test-2	60 Minutes	8	12-03-2024	16-30	OB
Test-3	60 Minutes	8	16-04-2024	31-40	СВ
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exams	3 Hours	56	22-05-2024	1-40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.AMENA BANO KHANANI Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC220	Environmental Science	3	0	3

Instructor-in-charge: Ms.YUKTI DEWANGAN

Learning Outcomes:

- 1. Master core concepts and methods from ecological and physical sciences and their application in environmental problem solving.
- 2. To describe the challenges of maintaining Soil quality and solid waste Management
- 3. Understand the transnational character of environmental problems and ways of addressing them, including interactions across local to global scales.
- 4. Apply systems concepts and methodologies to analyze and understand interactions between social and environmental processes.
- **5.** Understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management, and the effects of global warming and climate change

Textbook (s)	Principles of Environmental Science and Engineering, P.
T1	VenugopalaRao PHI Learning private limited, Publication)
T2	A Textbook of Environmental Chemistry and Pollution Control by S.S. Dara (S. Chand and Company)
Reference book	Masters, G.M. Introduction to Environment Engineering and Science
(s) R1	(Prentice Hall of India)
R2	Environmental Chemistry by A.K. Dey (Eastern Ltd.).
R3	Environmental Chemistry by B.K. Sharma (Krishna Prakashan).

Lecture No.	Learning Objecives	Topics to be covered	Reference (Ch.Sec/Page No.of Page Nos. of Text Book
1-3		Definition, Characteristics of Ecosystem: Structure of Ecosystem	T1:40-44
4-6	Observe and describe habitats	Function of ecosystem, Food chain, Food web, Trophic level, Energy Flow, ecological Pyramids	T1: 46-54
7-9		Types of ecosystem: Aquatic ecosystems Terrestrial ecosystems	T1:59-71
10-11		Land pollution, Lithosphere, Polluants.	T2 110-120
12-14, 15-18	To describe the challenges of maintaining Soil quality	Pollutants and their origin and effect, collection of solid waste Solid waste management, recycling and reuse of solid waste and their disposal techniques (open dumping, sanitary land filling, thermal, composting)	T2: 132-147
19-21	To describe the challenges of maintaining surface and ground water quality.	Aquatic Environment, water pollutants, Eutrophication	R2: 201-220

Lecture No.	Learning Objecives	Topics to be covered	Reference (Ch.Sec/Page No.of Page Nos. of Text Book
22-25	To describe the challenges of maintaining surface and ground water quality.	Chemical Speciation, monitoring techniques and methodology	R2: 12.11.1- 12.11.12
26-27		Determination of temporary and permanent	T1 : 251-252
28-30		Waste water treatment	T1 153-162
31-33		Introduction- definition- classification of air pollutants air quality standards.	T1: 125-131
34-37	To understand the sources of air pollution and describe the types of air pollutants.	Sources, Analysis, Effects and control measures for Sox, Nox, PM and CO	R2 : 146-172
38-40		Secondary [Photochemical smog, acid rain, ozone PAN (Peroxy Acetyl Nitrate)	

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	16	12-02-2024	1-10	CB
Test 2	60 Minutes	17	11-03-2024	11-24	OB
Test 3	60 Minutes	17	15-04-2024	25-42	CB
Lab	Continuous	10	**	**	**
Comprehensive Exam	3 Hours	40	16-05-2024	1- 42	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Ms.YUKTI DEWANGAN Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC221	Physics IV	4	2	5

Instructor-in-charge: Dr.ARUN KUMAR SINGH

Learning Outcomes:

- 1. The objective of this course is to make the students understand the basic Magnetism and way to analyze them.
- 2. It also introduces the concepts of Electromagnetic theory and, their applications using mathematical treatment.
- **3.** This course forms the basis for understanding the subsequent courses in science stream.

Text Books T1	Electromagnetic Field Theory and Transmission Lines by GSN Raju (Pearson Publication)
Reference Books R1	Physics for Degree Students (B.Sc. First) by C.L. Arora& P.S. Hemne (S. Chand)
R2	Elements of Electromagnetic Fields by S. P. Seth

Lecture No.	Learning Objective	Topics to be covered	Reference
1-2	To learn basics of magnetic field	Concept of electromagnetic field, Lenz's Law	Digital Notes
3-4	To cover magnetic field due to current carrying conductor	Biot - Savart law and its application to current carrying circular loop	3.6
5-6	Contd	Ampere's circuital law and its applications to infinitely long straight wire, Straight and to roidal solenoids	3.9-3.10
7-8	Understanding the concept behind force due to magnetic field or moving charge	Force on a moving charge in uniform magnetic and electric fields	R1 21.2

Lecture No.	Learning Objective	Learning Objective Topics to be covered	
9-10	Learning about various aspects of currying carrying conductors	Current loop as a magnetic dipole and its magnetic dipole moment	R1 21.6- 21.7
11-15	Understanding Magnetic dipole	Magnetic dipole moment of a revolving electron, Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis.	R1 21.10- 21.11
16-18	Learning about the force couple responsible for rotatory motion	Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid	R1 21.10- 21.11
19-21	Covering the properties of magnetic materials	Magnetic field lines; Para-, dia- and ferro - magnetic substances, with examples.	3.20
22-24	Understanding Basics of electrostatics	Basic Concepts of Electrostatics, Gauss's Law and its applications	17.27
25-27	Learning basics of coordinate system	Fundamentals of Coordinate systems (elementary idea only),	Digital notes
28-29	Understanding Basics of vector algebra	Elementary idea of Gradient, divergence & Curl, Electromagnetic waves,	1.1-1.6
30-32	Understanding Basics of EMF	Equation of Continuity for Time Varying Fields.	4.2
33	Combining various rules related to EMF	Maxwell's Equations for Time Varying Fields	4.3
34-35	Learning various of Maxwell's equation	Differential form of Maxwell's equation, Integral form of Maxwell's equation,	4.3-4.4
36-37	Converting Maxwell's equation from one form to other	Conversion from Differential form of Maxwell's Equation to Integral form,	4.5
38-39	Covering various situation for Maxwell's equation	Maxwell Equation for Static Field Characteristics of Static Field & Maxwell Equation for Static Field	4.6
40	Contd	Maxwell's equation for free space, Characteristics of Free Space & Maxwell Equation for Free Space	4.7
41-42	Contd	Maxwell Equation for Free Space and Static Field.	4.9

Physics II Lab Including Virtual Lab (VL)

S.No	Name of the Experiment
1	To study the variation of magnetic field with distance along the axis of a circular coil carrying current.
2	To determine the Hall voltage developed across the sample material. (VL)
3	To draw the static current-voltage (I-V) characteristics of a junction diode. (VL)
4	To verify Newton's Law of Cooling of different materials and different liquids. (VL)
5	To study Magnetic field along the axis of current carrying coil - Stewart and Gee's method
6	To find the value of Planck's constant using Photocell.
7	To find the value e/m using Thomson's method.
8	To study the AC waveform using CRO

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	12-02-2024	01-10	СВ
Test 2	60 Minutes	08	11-03-2024	11-20	OB
Test 3	60 Minutes	08	15-04-2024	31- 42	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	18-05-2024	01-42	СВ

**To be announced in the class

Make-up-policy: Make up will be given only under genuine circumstances for Tests only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Test, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.ARUN KUMAR SINGH Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC222	Chemistry IV (Organic Chemistry)	4	2	5

Instructor-in-charge: Dr.PIYUSH KUMAR THAKUR

Learning Outcomes:

- 1. The students can predict and account for the most commonly encountered reaction mechanisms in organic chemistry.
- 2. Learn to recognize the alcohol, phenol, and ether functional groups.
- 3. Recognize the physical and chemical properties of for aldehydes and ketones.
- 4. Recognize the general structures of carboxylic acids, acyl halides, acid anhydrides, esters and amides.
- **5.** To interpret the concept of aromaticity and the main properties of aromatic compounds.

Text Book T1	Organic chemsirty, R. T. Morrison, R. N. Boyd, sixth edition, pearson education.
Text Book T2	Organic Chemistry Reactions and Reagents, O.P. Agrawal, Goel publishing House.
Reference Books R1	Organic Chemistry, Francis A. Carey, seventh Edition, The McGraw-Hill, 2008.
Reference Book R2	Organic Chemistry, P.Y. Bruice, Third edition, Pearson Education.
Reference Book R3	March's Advanced organic chemistry, M. B. Smith, eighth edition, weily.

Lecture No.	Learning Objective	Topics to be covered	Reference
1-2	To understand different types reaction mechanisms in organic	Homolytic & heterolytic bond breaking, types of reagents- electrophones & nucleophiles. Types of organic reactions.	R3 279- 283
3-4	chemistry.	Reactive Intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes	R3 223- 276

Lecture No.	Learning Objective	Topics to be covered	Reference
5-6		Alkyl halides: Methods of preparation, Nucleophilic aliphatic substitution reactions, SN2 Reaction, Stereochemistry, SN1 Reaction	R3 404- 418
7-8		Relative stability of carbocations, SN2 Vs SN1, Elimination reactions, E2 mechanism, E1 mechanism, Electrophilic addition reaction.	T1 330- 346
9-10		Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt- Blanc Reduction; Preparation and properties of glycols Pinacol-Pinacolone rearrangement	R1 621- 640
11-13	To Explain and predict the important physical and Chemical properties of the alcohols, phenols, and ethers.	Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism.	T1 925- 948
14-16		Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH4	R1 602- 668
17	To understand the physical and chemical properties of for	Structure, reactivity and preparation; Nucleophilic additions	R1 701- 714
18	aldehydes and ketones.	Nucleophilic addition- elimination reactions with ammonia derivatives with mechanism	T1 693- 697
19-24	To understand the specific naming reaction and their mechanism	Aldol and Benzoin condensation, Knoevenagel condensation, Claisan-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation.	T2 514- 564

Lecture No.	Learning Objective	Topics to be covered	Reference
25-28	To understand the general	Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic/phthalic, lactic, malic, tartaric, citric, maleic and fumaric acids	R1 791- 815
29-32	structures of carboxylic acids, acyl halides, acid anhydrides, esters and amides.	Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilicsustitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmannbromamide degradation and Curtius rearrangement.	R1 830- 857
33-37		Nomenclature of benzene derivatives. structure of benzene: molecular formula and Kekule&Dewar structure. Stability and carbon-carbon bond lengths of benzene, resonance structure, MO picture.	T1 529- 544
38-39	Know the properties of aromatic	Aromaticity: The Huckel rule.	R2 602- 609
40-42	the chemical consequences of aromaticity.	Aromatic electrophilic substitution-General reaction mechanism, Mechanism of nitration, halogenation, sulphonation, mercuration and Fiedel-Crafts reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio. Side chain reactions of benzene derivatives. Birch reduction.	T1 553- 581

S.No	Name of the Experiment
1	Systematically identify the functional groups in the given organic compound and perform the confirmatory tests after identifying the functional groups.
2	Preparation of phenol formaldehyde resin. (Bakelite)
3	Preparing Phenol - Formaldehyde (PF) resin.
4	Preparing Urea-Formaldehyde (UF) resin.
5	Isolation and Quantification of Lycopene from Tomato.
6	To detect the halogens, nitrogen and sulphur in an organic compound. (VL)
7	To obtain pure components from a mixture of organic compounds using Fractional distillation.(VL)
8	To determine the amount of aspirin in the whole of the given solution (VL)
9	To estimate the amount of glucose in the whole of the given solution. (VL)
10	To calculate the maximum wave length of organic compounds (VL)

Chemistry II – Lab (Including Virtual Lab (VL)

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the courses of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	16	13-02-2024	01-10	СВ
Test 2	60 Minutes	17	12-03-2024	11-20	OB
Test 3	60 Minutes	17	16-04-2024	31- 42	СВ
Lab	Throughout the Semester	10	**	**	СВ
Comprehensive Exam	3 Hours	40	22-05-2024	01-42	СВ

Make-up-policy: Make-up-will be given only under genuine circumstances for Tests only However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.PIYUSH KUMAR THAKUR Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC223	Mathematics (Group Theory)	4	0	4

Instructor-in-charge: Dr.SHANTI SWARUP DUBEY

Learning Outcomes:

After successful completion of the course student will be able to

A student learning this course gets idea on concept and examples of groups and their properties. He understands cyclic groups, permutation groups, normal subgroups and related results. After this course he can opt for courses in ring theory, field theory, commutative algebras, linear classical groups etc. and can be apply this knowledge to problems in physics, computer science, economics and engineering.

Text Book (T)	Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage.
Reference Book(s)	Ramji Lal (2017). Algebra 1: Groups, Rings, Fields and Arithmetic. Springer.
Reference Book(s)	Abstract Algebra (H.K. Pathak)

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
1-5	Group structure and Various types of Groups	Groups and its Elementary Properties Symmetries of a square, Definition and examples of groups including dihedral, permutation and quaternion groups, Elementary properties of groups.	Ch-1,2/31-54/T
6-11	Subgroup, Cyclic gruop	Subgroups and Cyclic Groups Subgroups and examples of subgroups, Cyclic groups, Properties of cyclic groups, Lagrange's theorem, Euler phi function, Euler's theorem, Fermat's little theorem.	Ch-3,4/60-95/T

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
12-16	Normal Subgroups , Simple group, Factor group	Normal Subgroups Properties of cosets, Normal subgroups, Simple groups, Factor groups, Cauchy's theorem for finite abelian groups;	Ch-9/185-200/T
17-21	Centre of group	Centralizer, Normalizer, Center of a group, Product of two subgroups; Classification of subgroups of cyclic groups.	
22-27	Permutation Groups	Permutation Groups Cycle notation for permutations, Properties of permutations, Even and odd permutations, alternating groups, Cayley's theorem and its applications.	Ch-5/99-118/T
28-33	Group Homomorphism	Group Homo morphisms, Rings and Fields Group homo morphisms, Properties of homo morphisms,	Ch-10/208-219/T
34-40	Group Isomorphism, Ring ,Field.	Group isomorphisms, Properties of isomorphisms; First, second and third isomorphism theorems for groups; Definitions and elementary properties of rings and fields.	Ch-6/127-138/T Ch-12/245-250/T Ch-19/349-355/T

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	16	13-02-2024	1-11	CB
Test 2	60 Minutes	17	12-03-2024	12-27	OB
Test 3	60 Minutes	17	16-04-2024	28-40	СВ
Quizzes (2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	20-05-2024	1- 42	СВ

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.SHANTI SWARUP DUBEY Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC224	Operating System	3	0	3

Instructor-in-charge: Dr.PALAK KESHWANI

Learning Outcome -

After successful completion of the course student will be able to:

- 1. To understand the basic concepts and functions of operating systems.
- 2. To understand Process and Threads
- 3. To analyze Scheduling algorithms.
- 4. To understand the concept of Deadlocks.
- 5. To analyze various memory management schemes.
- **6.** To understand I/O management and File systems.

Textbook(s) T1	Operating System Concepts, Silberschatz, A and Galvin, P.B, 7th edition, Addison, Wesley, 1998.
Textbook(s) T2	Operating Systems- A concept bases approach, Dhamdhere D.M., 2nd edition, TMH 2006.
Reference book(s) R1	Operating Systems, Stallings W, 4th edition, PHI, 2001.
Reference Book R2	The design of the Unix operating System, Bach, M.J, PHI, 1986
Reference Book R3	Modern Operating Systems, Tanenbaum, A.S. PHI 1996
NPTEL	https://nptel.ac.in/courses/106/105/106105214/

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1	To understand	Overview	T1 CH-1

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
2	operating system, functions and its	Operation System objectives and functions	T1 CH-1
3	types	The Evolution of operating Systems	T1 CH-1
4		Batch, interactive time sharing and real time systems	T1 CH-1
5		Operating System Structure, operating system service,	T1 CH-3
6		Process overview (State, PCB)	T1 CH-4
7-8	To understand the concept of	Process Scheduling	T1 CH-4
9	process and its various states	Threads	T1 CH-5
10		Inter Process Communication(IPC)	T1 CH-5
11	To know what is scheduling	CPU Scheduling Overview	T1 CH-6
12-13	and its importance	Scheduling Algorithms	T1 CH-6
14		Critical Section Problem	T1 CH-7
15	To understand the problem of	Multi Process Solution	T1 CH-7
16	Critical Section and its solution	Semaphores	T1 CH-7
17		Classical Problems of Synchronization	T1 CH-7
18-20	To know what is deadlock and its handling	Deadlock Handling	T1 CH-8
21		Memory Management Overview	T1 CH-9
22-23	To understand various	Paging	T1 CH-9
24	memory management schemes and their	Segmentation	T1 CH-9
25	disadvantages and	Segmentation with Paging	T1 CH-9
26		Virtual Memory	T1 CH-10

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
27		Demand Paging	T1 CH-10
28		Page Replacement	T1 CH-10
29		Page Replacement Algorithms	T1 CH-10
30		Thrashing	T1 CH-10
31		File Operations	T1 CH-11
32-33	To understand concept of files and brief introduction to distributive O.S	Directory and File system Structure	T1 CH-11
34-35		Allocation Methods,	T1 CH-12
36-38		Disk Scheduling	T1 CH-12
39-40		Types, features and uses of distributive O.S	T1 CH-12

Student's evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	16	13-02-2024	1-10	СВ
Test 2	60 Minutes	17	12-03-2024	11-20	OB
Test 3	60 Minutes	17	16-04-2024	21-30	СВ
Presentations/Lab	Continuous	10	**	**	**
Comprehensive Exam	3 Hours	40	22-05-2024	1- 40	СВ
** To be announced in the class $OB = Open Book Exam$ $CB = Closed Book Exam$					

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.PALAK KESHWANI Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
HSC221	Basic Material Science	4	2	5

Instructor-in-charge: Dr.ANIL KUMAR VERMA

Learning Outcomes:

The objective of a Materials science is to predict and control material properties through an understanding of atomic, molecular, crystalline, and microscopic structures of engineering materials. We study the properties of materials in order to better understand them, what they can do, and how they interact with their environment.

The fundamental aim of materials science and engineering is materials selection ensuring required functions and application properties of products, which are manufactured out of them. The tasks of that field of science in priority spheres of the world development are determined.

Text BooksT1	Physics for Degree Students (B.Sc. Third Year) by CL Arora and Dr. CP Hemne, S.Chand Publication, First edition	
Text Books T2	Unified Physics for Degree Students (B.Sc. Final) by Dr.R.P. Goyal	
Reference Books R1	A textbook of Engineering Physics by MN Avadhanulu and PG Kshirsagar, S. ChandPublication, First edition.	
Reference Books R2	Spectroscopy by H Kaur, Pragati Prakashan (2015)	

Lecture No.	Learning Objective	Topic to be covered	Reference
1-2	To characterize different materials	Single crystalline, polycrystalline and amorphous materials	R2 411-412
3-5		Single crystals: unit cell, crystal systems, Braais lattices,	T1 599-602
5-7		Directions and planes in a crystal Millerindices-inter- planar	T1 617-627

Lecture No.	Learning Objective	Topic to be covered	Reference
8-10	To understand the geometry of solids with different coordination number	Coordination number and packing factor for SC, BCC, FCC	T1 777-780
11-15	To know the other properties of	Crystal imperfections: point defects, line defects and planner defects	T1 803-809
16-20	Materials such as diffusion, dielectric breakdown, chemical durability	Voids, tetrahedral void, octahedral voids, Size of Spheres that fit into voids.	R1 490-492
21-22	To describe the physical characteristics such as electronic structure and optical and transport properties, and current – voltage characteristics of semiconductors.	Electrical Conduction, Band Theory, Conduction Mechanism,	R1 506-519
23-24		Intrinsic and Extrinsic Semiconductor, Effect of Temperature in Semiconductor	R1 527-548
25-26		Hall effect and its application	R1 547-549
27-29		Elementary idea about PN junction diode and BJT	R1 556-654, 589- 600
39-31	To understand how a changing electric magnetic field creates a changing	Magnetic field strength, Magnetic moments, Magneization, Magnetism, Magnetic Susceptibility, Magnetic Permeability	R1 608-612
32-36	electric field (and Vice Versa)	Dia-magnetism, Para- magnetis, Ferro-magnetism Hysteresis, Hard and Soft magnets	R1 613-640
37-42		Superconductiviey, Bardeen-Cooper Schrieffer (BCS) Theory, The Meissner effect, Types of Superconductors	R1 644-660

S.No	Name of the experiment
1	To study and measurement of e/m of an electron by Thomson,s method
2	To study and determine the dielectric constant of material
3	To study and determine Band gap of a semiconductor by four probe method
4	To study Hall effect in Semiconductor
5	To study of P-N junction characteristics
6	To study of BJT Junction Transistor characteristics.
7	To Study of magnetic hysteresis and plot magnetic hysteresis loop
8	To study various crystals structures (VL)
9	To precipitate nickel from the solution by adding dimethyl glyoxime (VL)
10	To determine and separate the constituent like Copper, Zinc, Tin, Lead and Iron in brass (VL)

Physics II Lab (Including Virtual Lab)

Evaluation Scheme:

Student evaluation is based on the series of Tests and presentation conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	16	14-02-2024	1-10	СВ
Test 2	60 Minutes	17	13-03-2024	11-20	OB
Test 3	60 Minutes	17	18-04-2024	21-32	СВ
Presentations/Lab	Continuous	10	**	**	**
Comprehensive Exam	3 Hours	40	27-05-2024	1- 42	СВ

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.ANIL KUMAR VERMA Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
HSC223	Partial Differential Equation and Calculus of Variations	4	2	5

Instructor-in-charge: Ms.YOGITA CHANDRAKAR

Scope and Objective of the course:

To equip students with the concepts of partial differential equations and how to solve linear Partial Differential with different methods. Students also will be Introduced to some physical problems in Engineering models that results in partial differential equations.

Text Book(T)	Ordinary and Partial Differential Equations (Dr. M.D. Raisinghania, S. Chand)
Reference book(s)	Calculus of Variations with Applications (A.S. Gupta)

Lecture wise plan:

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter /sec./Page Nos of Text /Ref. Books)
1-5	First order partial differential equations	Order and Degree of PDE, Concept of linear and non-linear PDE, PDE of 1 st order, Lagrange's method, Charpit's general method.	Ch-1.2,3/1.3- 3.79/T
6-11	Second order partial differential equations with constant coefficients	Classification of linear PDE of 2 nd order, Homogeneous and Non Homogeneous equations with constants coefficients.	Ch-4/4.1- 4.34/T
12-16	Second order partial differential equations with variable coefficients	PDE reducible to equation with constant coefficients, 2 nd orderPDE with variable coefficients, Classification of 2 nd order PDE	Ch-5/5.1- 5.38/T

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter /sec./Page Nos of Text /Ref. Books)
17-21	Second order partial differential equations with variable coefficients	Reduction to canonical normal form, Monge's Method, Solution of heat and wave equations in one and two dimensions by method of separation of variables.	Ch-5/5.1-5.38/T
22-27	Calculus of variations- Variational problems with fixed boundaries	Euler's equation for functional containing 1 st order and higher order total derivatives, Functional containing First order partial derivates.	Ch-1,2/1-30/R

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test1	60 Minutes	17	14-02-2024	1-10	СВ
Test2	60 Minutes	17	13-03-2024	11-19	OB
Test3	60 Minutes	16	18-04-2024	20-27	СВ
Quizzes(2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	27-05-2024	1-42	СВ

** To be announced in the class

Make-up-policy: Make-up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribe Assessment Tests, Tests Comprehensive Examination, etc.

Date: 08/01/2024

Ms.YOGITA CHANDRAKAR Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
HSC225	Bio Chemistry	4	2	5

Instructor-in-charge: Ms.YUKTI DEWANGAN

Learning Outcomes:

This course is offered in the first semester for the second year students of bachelor of sciences.

- 1. Explain the comparative account anatomy of vertebrates.
- 2. Explain various physiological system of vertebrates.

Text Books T1	Cell Biology V K Agarwal
Text Book T2	Comparative Anatomy of Vertebrates : S.Chand
Text Book T3	Navbodh Unifed Zoology II: Dr.K. P Dwivedi

Unit- I:

- 1. Comparative account of integuments and its derivatives of vertebrates.
- 2. Alimentary canal and digestive glands in vertebrates.
- 3. Respiratory organs in vertebrates.

Unit-II:

- 1. Endoskeleton: (A) Axial Skeleton- Skull and Vertebrae.
- (B) Appendicular skeleton Limb & Girdle
- 2. Circulatory System: Evolution of Heart and Aortic Arches.
- 3. Urinogenital System: Kidney and Excretory Ducts.

Unit- III:

- 1. Nervous System: General Plan of Brain and Spinal Cord.
- 2. Ear and Eye: Structure and Function.
- 3. Gonads and Genital Ducts.

Unit-IV:

- 1. Digestion and Absorption of Dietary Components
- 2. Physiology of Heart, Cardiac Cycle and ECG.
- 3. Blood Coagulation.

4. Respiration: Mechanism and Control of Breathing.

Unit-V:

- 1. Excretion, Physiology of Excretion, Osmoregulation.
- 2. Physiology of Muscle Contraction.
- 3. Physiology of Nerve Impulse, Synaptic Transmission

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test1	60 Minutes	17	14-02-2024	1-11	СВ
Test2	60 Minutes	17	13-03-2024	12-27	OB
Test3	60 Minutes	16	18-04-2024	28-40	СВ
Quizzes(2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	27-05-2024	1-40	СВ

** To be announced in the class

Make-up-policy: Make-up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribe Assessment Tests, Tests Comprehensive Examination, etc.

Date: 09/01/2024

Ms.YUKTI DEWANGAN Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC320	Foundation Course Soft Skills	3	0	3

Instructor-in-charge: Mr.ZAFIR KHAN

Learning Outomes:

After successful completion of the course student will be able to

- 1. Understand the concept, importance and types of soft skills.
- 2. Learn the usage of effective soft skills and draw benefit from it.
- 3. Develop listening, writing and speaking skills.
- 4. Personality development and attributes of success.
- 5. Prepare students for interviews, group discussions and make them ready for corporate life.

Lecture Nos	Learning Objective	Topics to be covered	Reference
1,2	Learning basic concepts & definitions	Introduction to soft skills, Basics of Communication	PC-Unit1- chapter1
3,4	Develop effective speaking skills	Speaking skills - Theory & Concept, Practical (Extempore)	PC-Unit4- chapter26
5,6	Develop effective listening skills	Listening - Concept & Techniques, Practical Orientation	PC-Unit4- chapter22
7,8	Develop effective writing skills	Language Fluency, abstract and summary	PC-Unit3- chapter17
9,10	Importance and build Postive attitude	Attitude - Concept & Techniques, Positive attitude	YCW- chapter1,2
11,12	Motivation	Motivation-importance, process, benefits	YCW- chapter6

Lecture Nos	Learning Objective	Topics to be covered	Reference
13,14,15	Personality development	Grooming, development, positive personality	YCW- chapter10
16,17,18	Attributes of success	Adaptability, habits-develop and maintain	YCW- chapter3,4
19,20,21	Written official comm	Office circulars & notices, Report writing	PC-Unit2- chap10, Unit3- chap13
22,23	General awareness- methods to develop	General Awareness - Building & Importance	NA
24,25,26	Build effective presentation skills	Presentation Skills - Concept, Techniques, Class activity	PC-Unit4- chapter26
27,28	Personal Interview	Professional Self-introduction, Specific Skills for PI	Practical
29,30	Effective interview skills	Mock Interviews & GD	Practical
31,32	Profile writing and explaining	Role of CV in Selection, Defending & Validating CV	PC-Unit4- chapter24
33,34	Internships-learning and expectations	Sectoral Interest, Company Updates, Achievements, Learnings	Practical
35,36	Prepare for interviews and GD	Mock Interviews & GD	Practical
37,38	Self-awareness	Self-Evaluation, Career Expectations, Goal Setting & Initiatives	YCW- chapter4
39,40	Corporate overview	Corporate Expectations, Demand- Supply Dynamics	Current state

Classroom Practical:

S.No	Name of the Practical
1	Professional Self-introduction, Specific Skills for PI
2	Presentation and pitch delivery
2	Mock Interviews & GD
3	Sectoral Interest, Company Updates, Achievements and Internship Learnings

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	12-02-2024	01-10	СВ
Test 2	60 Minutes	08	11-03-2024	11-20	OB
Test 3	60 Minutes	08	15-04-2024	31- 40	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	16-05-2024	1-40	СВ

** To be announced in the class

Make-up-policy: Make-up will be given under genuine circumstances for Test Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 08/01/2024

Mr.ZAFIR KHAN Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC321	Basic Electrical and Electronics	4	2	5

Instructor-in-charge: Dr.ANIL KUMAR VERMA

Learning Outcomes:

- 1. The objective of this course is to make the students understand the basic electric circuits and the techniques of analyzing them.
- 2. It also introduces the concepts of basic of semiconductor and electronic devices like Diode and Transistor, with their applications in Rectifier, Amplifier etc.
- **3.** This course forms the basis for understanding the subsequent courses in electrical and electronics Sciences.

Text books T1	Fundamentals of Electrical Engineering, Leonard S. Bobrow,
	Oxford University Press, 2nd Edition.1996.
Reference	Engineering circuit analysis, WH.Hayt, J.E. Kemmerly, McGraw Hill
Books R1	company, 6th Edition, 2000.
Reference Book	Electronic Devices & Circuits Millmon & Helkies McGreyy Hill 2002
R2	Electronic Devices & Circuits, Winnian & Haikias Weoraw Hill, 2002.
Reference Book	Analog Electronics L.K. Maheshwari and M.M.S. Anand, , 1st Ed.,
R3	PHI,2005.

Lecture-Wise-Plan:

Lecture No.	Learning Objective	Topics to be covered	Reference
1-2	To understand the concept of basic circuit elements	Introduction to Basic Circuit theory & Circuit elements	1.1
3-5	To understand the concept of basic electrical laws	Kirchhoff's Current & Voltage Laws	1.2, 1.3
6	To understand the concept of basic sources	Independent & Dependent Sources	1.4, 1.5
7-9	To understand the methods of circuit Analysis	Mesh & Nodal Analysis	2.1, 2.3, 2.4
10-13	To understand the network theorems	Thevenin's & Norton's theorem	2.5

Lecture No.	Learning Objective	Topics to be covered	Reference
14-17	To understand the concept of basic theorems	Linearity, Superposition, Maximum power transfer theorems	2.5, 2.6
18-20	Learning characteristics of energy storage elements	Energy storage elements (Inductors & Capacitors) their relationships	3.1, 3.2, 3.3
21-23	To study basics of semiconductors	Semiconductors: intrinsic and doped: p-n junction	6.1, 6.2
24-26	To study operation and characteristics of junction diodes	junction Diode & its characteristics	6.3, 6.4, 6.6
27-32	Application of diode	Rectifier circuits, filters and their types.	R2 4.8, 4.9, 4.10
33-34	Operation and application of Zener diodes	Zener Diode & its characteristics	6.6
35	To study operation of transistors	Introducing transistors & their types	7.1
36-38	To study classification and characteristics of transistors	PNP and NPN transistors and their characteristics & operation	7.2, 7.3
39-40	To study working and characteristics of BJT	Biasing and Stability of BJTs, BJT amplifier, common emitter configuration	9.1, 9.2
41-42	To study operations of FETS/MOSFET	FETs/ MOSFETs with their operations & characteristics	8.1

Physics VI Lab

S.No	Name of the Experiment
1	To study the characteristics of a PN junction diode. (SEE Lab 3.0)
2	To study the characteristics of a Zener diode.
3	To study and verify Half wave rectifier using PN Junction. (SEE Lab 3.0)
4	To study and verify Full wave rectifier using PN Junction. (SEE Lab 3.0)
5	To study the characteristics of a NPN Transistor. (SEE Lab 3.0)
6	To study and verify the Kirchoff's Law

S.No	Name of the Experiment
7	To study and verify the Thevenin's theorem.
8	To study and verify Norton's theorem.
9	To study and verify Maximum Power Transfer theorem.
10	To study and verify Super position theorem.

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	12-02-2024	01-10	СВ
Test 2	60 Minutes	08	11-03-2024	11-20	OB
Test 3	60 Minutes	08	15-04-2024	31- 42	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	18-05-2024	1-42	СВ

** To be announced in the class

Make-up-policy: Make-up will be given under genuine circumstances for Test Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 10/01/2024

Dr.ANIL KUMAR VERMA Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title	L	Р	U
SC322	Chemistry VI	4	2	5

Instructor-in-charge: Dr.PIYUSH KUMAR THAKUR

Learning Outcomes:

- 1. Instrumental analysis is a field of analytical chemistry that investigates analytes using scientific instruments.
- 2. Compared to simple laboratory tests, instrumental methods of analysis may give improved: speed (they are quick) accuracy (they reliably identify elements and compounds) sensitivity.
- **3.** To understand the major categories of instrumental methods such as the spectral, electro analytical, and separatory.

Text Books T1	Textbook of Quantitative Chemical Analysis by Vogel's, 5 th Edition, British Library Cataloguing in Publication Data.
Text Books T2	Instrumental Methods of Chemical Analysis, G.R. Chatwal, S.K. Anand, 5 th Edition, Himalaya publication House.
Text Books T3	College Analytical Chemistry, S.A. Zauri, D. Yogesh, V. Ghalsai, P. Sathe, S.S. Mangeskar, 4 th Edition, Himaliyan Publication House.
Reference Books R1	The Essence of Chromatography by Colin F. Poole
Reference Books R2	Spectroscopy by H. Kaur, Pragati Prakashan.

Lecture No.	Learning Objective	Topics to be covered	Reference
1-2		Principle and instrumentation of pH meter, Conduct meter, Potentiometer	T2 2.487- 2.488, 2.511- 2.517
3-4	To understand the working of basic instrument for analysis	Optical Methods: General design – sources of radiation – wavelength selectors	T1 616- 623
5-6		sample containers – radiation transducers, types of optical instruments	T3 86-118

Lecture No.	Learning Objective	Topics to be covered	Reference
7-9	Study of the emission,	Molecular Spectroscopy: Measurement of transmittance and absorbance – beer's law	R2 238- 250
10-15	absorption and scattering of electromagnetic radiation accompanying transitions	spectrophotometer analysis – qualitative and quantitative absorption measurements	T1 5-6
16-19	among atomic or molecular energy levels.	types of spectrometers – IR – Raman spectroscopy – instrumentation – theory.	R2 149, 220
20-21	To understand the separation, identification, and purification	Chromatography: Solvent extraction – principles of ion exchange, paper, thin layer	T1 213, 234
22-23	for qualitative and quantitative analysis.	Chromatography techniques – Columns, adsorbents, methods, Rf values,	T1 198- 200
24-25	To identify, quantify and purify a particular analyte or	HPLC techniques – Adsorbents, columns, detection methods, estimations	R1 860- 883
26-27	compound.	Application of chromatographic analysis	T1 232
28-29	To determination of trace	Atomic Absorption Spectroscopy- Introduction, Principle	R2 565
30-31	metals in many types of samples composed of organic	Classification of atom is spectroscopic method, Instrumentation for AAS	R2 566, 568
32-33	of morganic matrices.	Interferences in AAS, applications of AAS, Some typical analysis	R2 573- 577
34-35		Atomic Emission Spectroscopy- Introduction, advantages and disadvantages	R2 582
36-37	To determine and quantify the	Principle and instrumentation of AES	R2 584
38-39	material.	Measurement of light intensity	R2 589
40		Application of emission spectroscopy.	R2 591

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	13-02-2024	01-10	СВ
Test 2	60 Minutes	08	12-03-2024	11-20	OB
Test 3	60 Minutes	08	16-04-2024	31- 40	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	20-05-2024	1-40	СВ

** To be announced in the class

Make-up-policy: Make-up will be given under genuine circumstances for Test Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 08/01/2024

Dr.PIYUSH KUMAR THAKUR Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
SC323	Mathematics-VI	4	0	4

Instructor-in-charge: Dr.SHANTI SWARUP DUBEY.

Learning Outcomes:

After successful completion of the course student will be able to

- 1. The knowledge of auto morphism helps to study more on field theory.
- 2. Students learn on direct products, group actions, class equations and their applications with proof of all results.
- 3. This course helps to opt for more advanced courses in algebra and linear classical groups.
- 4. Ring theory-Ring homomorphism
- **5.** Unique factorization domain

Text Book T1	Abstract Algebra by Dr H K Pathak
Text Book T2	Algebra & Trigonometry by Dr H K Pathak

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
1-2	Group	Definition of group, groupoid, semi-group,	T2 Ch-7 pp-270-283
3-4	Automorphism, Inner automorphism, automorphism groups	Definition of automorphism, inner automorphism, automorphism groups problems	T1 Ch-1 pp-1-32
5-6	Applications of factor groups to automorphism groups.	Applications of factor groups to automorphism groups and its theorems	T1 Ch1 pp-23-17

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
7-9	Characteristic Subgroups. Conjugacy relation	Characteristic Subgroups. Conjugacy relation, and their properties and theorems	T1 Ch 1 pp-4-21
10-13	Normaliser Counting principle	Definition of Normalizer and Counting principle. Normalizer of an elements	R2 Ch-1 pp-20-22
14-19	Center for Group.	Definition of Center for Group, Center for Group of prime- order. Abelianizing of a group and its universal property	T1 Ch-1 pp-23-25
20-24	Sylow subgroup, Sylow's theorem	Definition of Sylow subgroup, and Proof of Sylow's theorem	T1 Ch-2 pp-33-64
25-27	Commutator subgroup	Definition of Commutator subgroup and its theorems.	T1 Ch- pp-48-56
28-32	Properties of external direct products,	Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups	T1 Ch-4 pp-168-195
33-34	Ring theory	Definition of Ring theory and examples	T2 Ch-16 pp-523-588
35-37	Ideals and Quotient Rings	Ring homomorphism. Ideals and Quotient Rings. Field of Quotients of an Integral Domain. Euclidean rings. Polynimial Rings. Polynomials over the Rational Field	T2 Ch-16 556-588
38-40	Unique factorization domain	Definition of Unique factorization domain and its theorems	T1 Ch-3 pp-144-162

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	13-02-2024	01-10	СВ
Test 2	60 Minutes	08	12-03-2024	11-20	OB
Test 3	60 Minutes	08	16-04-2024	31- 40	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	22-05-2024	1-40	СВ

** To be announced in the class

Make-up-policy: Make-up will be given under genuine circumstances for Test Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.SHANTI SWARUP DUBEY Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
HSC321	Modern Physics	4	0	4

Instructor-in-charge: Dr.ARUN KUMAR SINGH

Learning Outcomes:

- 1. Physics VI forms the Second part of a two-semester comprehensive course on corevel physics to be taught to all engineering students.
- 2. The course aims at developing an understanding of the basic principles of physics and the application of concepts to problems of practical interest.
- 3. The emphasis is on improving the problem solving skills of students.

Text books T1	Physics for Degree Students B.Sc. third year, by Arora C.L.,Hemne P.S.
Reference books	A Textbook of Engineering Physics by Avadhanulu and Kshirsagar,
R1	S. Chand & Company Ltd.

Lecture No.	Learning Objective	Topics to be covered	Reference
1-2	To discuss about atoms nuclei and Rutherford scattering	Atoms, Nuclei and Solids: Rutherford scattering (detailed derivation),	R1 13.10-13.12
3-5	To study Compton scattering	Compton scattering and comparison with Raman scattering	R1 13.10-13.12
6-8	To discuss Mossbauer effect and solid state detectors	Mossbauer effect, Solid state detectors,	Digital Notes
9-11	To study mass spectrometer	Mass spectrometer (illustrated by Bainbridge and Aston spectrometer), Charge particles in magnetic field, Landau levels.	R1 5.11

Lecture No.	Learning Objective	Topics to be covered	Reference
12-13	To learn the concept of fundamental of quantum mechanics	Wave-particleduality,Photoelectriceffect,ComptonEffect,WavesMatter	R1 13.23-13.25
14-16	Understanding particle wave duality of matter	de-Brogle wavelength. X-ray and neutron diffraction and Bragg's Law	R1 13.23-13.25
17-20	Understanding various spectras.	Electron waves and Davisson Germer experiment. Rutherford scattering and concept of nucleus, Elementary ideas of atomic and molecular spectra.	R1 13.23-13.25
21-24	To study types of interaction, parameter	Types of Interaction, parameters	42.2
25-28	To discuss classification of particle and conservation law	classification, exact conservation laws	Digital notes
29-30	To discuss of conservation law and symmetry	approximate conservation laws, symmetry	Digital notes
31-33	To study Quarks model	quark model	44.1,44.2
34-35	To discuss elementry particle and it,s parameters	Elementary Particles & their classifications, Types of interaction, parameter, classification,	44.3
36-37	To study exact consxervation laws and some problems	exact conservation laws, relativistic problems, symmetry	44.4
38-39	To study about radioactivity, mean life ,half life	Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half- life;	10.1,10.2, 10.3,
40-42	To discuss about various decays	Alpha decay; Beta decay- energy released	10.8,10.9, 10.10

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	14-02-2024	01-10	СВ
Test 2	60 Minutes	08	13-03-2024	11-20	OB
Test 3	60 Minutes	08	18-04-2024	31- 42	СВ
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	24-05-2024	1-42	СВ

** To be announced in the class

Make-up-policy: Make-up will be given under genuine circumstances for Test Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 09/01/2024

Dr.ARUN KUMAR SINGH Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
HSC322	Chemistry D-Block Element	4	2	5

Instructor-in-charge: Dr.PIYUSH KUMAR THAKUR

Learning Outcomes:

- 1. To acquire knowledge on Transition metals and their electronic configuration oxidation states, spin properties, Colour property, magnetic properties and Catalytic applications of d-block elements.
- 2. To understand the Bonding in metals, Conductivity of metals, Semiconductors and its applications.
- 3. To acquire the knowledge on structures of Compounds of d-block elements, EAN and stability of metal carbonyls.
- 4. To acquire knowledge on properties of Lanthanides and Actinides, Oxidation states related to stability, colour and magnetic properties,
- 5. Lanthanide and actinide contraction and its consequences.

Textbook (s) T1	Chemistry for degree students, for II Year by Dr. R.L. Madan S.Chand Publication.
Textbook T2	Chemistry for degree students, for III Year by Dr. R.L. Madan S.Chand Publication.
Reference Book (s) R1	Advanced Inorganic Chemistry by S.K. Agrawal and Keemti Lal, Pragati Publication
Reference Book R2	Inorganic Chemistry 3 rd Edition G.L. Mieessler and D.A. Tarr

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1-2	Metal Ligand Bonding In Transition Metal Complexes:	Limitations of Valence Bond Theory, an elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes,	T2 25-44

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
3-5		factors affecting the crystal field parameters. Thermodynamic and kinetic aspects of metal complexes.	T2 45-48
6-7		A brief outline of thermodynamic stability of metal complexes and factors affecting the stability of square planar complexes	R1 227
8-12	To understand the Chemistry of elements of first transition series	Introduction, characteristic properties(electronic configuration, complex formation, magnetic property, formation of colour, catalytic activity, periodic properties)of d- block Elements,	T1 3-24
13-15		properties of the element of first transition series, Relatively stability of their oxidation state, coordination number	T1 25-70
16–18		Introduction, characteristic properties(electronic configuration,	T1 79-80
19-20	To understand the Chemistry of	complex formation, magnetic property, formation of colour, complex formation	T1 85
21-23	Second & Third transition series	catalytic activity, periodic properties) of d-block Elements, properties of the element of Second &Third transition series,	T1 86-93
24-25		Relatively stability of their oxidation state, coordination number	T1 94-101
26-27	Magnetic Properties of Transition Metal	Types of magnetic behaviour, methods of determining magnetic susceptibility,	T2 58- 65
28-29		spin only formula, L-S coupling, correlation of μ_s and μ_{eff} values, orbital contribution	T2 68-74

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
		to magnetic moments, application of magnetic moment data for 3d metal complexes. Electronic spectra of Transition Metal complexes.	
30-31		Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectrochemical series. Orgel energy level diagram for d ¹ and d ² states, discussion of the electronic spectrum of [Ti $(H_2O)_6]^{3+}$ complex ion.	T2 84-113
32-34	Coordination	Werners coordination theory,	T1 174-175
35-37	Compounds	effective atomic number concept, chelates,	T1 176- 178
38		nomenclature of coordination compounds,	T1 180-183
39-40		valence bond theory of transition metal complexes.	T1 194- 200

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	08	14-02-2024	1-15	СВ
Test 2	60 Minutes	08	13-03-2024	16- 30	OB
Test 3	60 Minutes	08	18-042024	31- 40	СВ
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	24-05-2024	1- 40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 08/01/2024

Dr.PIYUSH KUMAR THAKUR Instructor-in-charge

Faculty of Science Second Semester, 2023-2024 Course Handouts

Course Code	Course Title		Р	U
HSC323	Numerical Analysis	4	0	4

Instructor-in-charge: Dr.ANIMESH KUMAR SHARMA

Scope and Objective of the course:

- 1. In reality "Solving a Math problem" generally involves finding an answer rather than exact answer.
- 2. Numerical Analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis.
- 3. A numerical method is a complete and definite set of procedures for the solution of a problem, together with computable error estimates. The study and implementation of such methods is the field of numerical analysis/numerical methods.
- 4. A trick that lets you get closer and closer to an exact answer is a Numerical Method.

Text Book (T)	Numerical Methods (M. K. Jain , S. R. K. Iyengar , R. K. Jain)
Reference book (s) R1	Mathematics Numerical Analysis (G ShankerRao)
Reference Books R2	Numerical Analysis (Schaum's outlines -2 nd Edition)

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
1-5	Transcendental and Polynomial equations	Introduction ,Bisection method, Iteration methods based on first degree equation, Method of False Position, Newton- Raphson Method, Secant Method	Ch-1/1-13/T

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
6-11	Linear algebraic equations and Eigen value problems	Introduction, Direct methods, Iteration methods, Eigen values and Eigen vectors, Bounds on Eigen values, Jacobi method for symmetric matrices.	Ch-2/71-86/T
12-16	Interpolation and Approximation	Introduction, Lagrange and Newton Interpolations, Finite difference operators, Interpolating polynomials using finite difference ,Gregory- Newton interpolations	Ch-3/144-158/T
17-21	Differentiation and integration	Introduction , Numerical differentiation, Newton Forward and Backward Interpolation differentiation first and second order differentiation ,	Ch-4/212-231/T
22-27	Differentiation and integration	Method based on Interpolation(For unequal intervals), Numerical Integration, NewtonCote Quadrature formula, Simpson's 1/3 rd and 3/8 th rule, Weddle's rule	Ch-4/212-231/T
28-33	Numerical solution of ordinary differential equations	Introduction, Euler's method, Picard's Method	
34-40	Numerical solution of ordinary differential equations	Taylor's Series Method, Runge- Kutta's Fourth order method .	Ch-272-296/T

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightag e	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	17	14-02-2024	1-11	СВ
Test 2	60 Minutes	17	13-03-2024	12-27	OB
Test 3	60 Minutes	16	18-04-2024	28-40	СВ
Quizzes (2)	20 Minutes	10	**	**	СВ
Comprehensive Exam	3 Hours	40	24-05-2024	1- 40	СВ

****** To be announced in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 07/01/2024

Dr.ANIMESH KUMAR SHARMA Instructor-in-charge